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Unsteady gasdynamic concepts are used to model the piston-driven compression of 
a confined gas. Perturbation methods, based on the limit of small piston Mach 
number, are used to construct solutions. The piston Mach number increases smoothly 
from zero to a maximum value, M p  = 0(10-2) during an acoustic time period t: = 

O( s). A linear acoustic field is generated and is represented in terms of an infinite 
series of Fourier spatial modes. During the longer piston time period tz = 0(1Op2 s) 
the piston moves at constant speed. A multiple-timescale formulation is used to 
separate the instantaneous acoustic field from the accumulated bulk response of the 
gas to piston compression. The latter is found to be identical to the classical quasi- 
static results from equilibrium thermodynamic calculations. Nonlinear effects 
become important on the piston timescale. Modal interactions are represented by a 
system of coupled, nonlinear ordinary differential equations for the time-dependent 
Fourier coefficients. A numerical solution for this system describes the wavefront 
steepening to form a weak shock and its propagation back and forth repeatedly 
inside the cylinder. 

1. Introduction 
The piston-driven compression of a gas in an insulated cylinder is described 

frequently in terms of classical equilibrium thermodynamic concepts (Zemansky 
1957). Isentropic relationships are employed to find the dependence of pressure and 
temperature on the instantaneous volume. At least formally, the piston speed must 
be vanishingly small in order to prevent the formation of spatial gradients of any 
type, to preclude the appearance of acoustic disturbances and to suppress significant 
fluid velocities which would have to be dissipated ultimately by viscous effects. These 
limitations would appear to prevent one from using classical arguments to describe 
processes in internal combustion engines, although there is an extensive literature on 
the subject (Obert 1970). In a typical engine with a shaft rotation rate of 3000 r.p.m. 
and a piston stroke of 0.08 m, one finds a maximum piston Mach number M p  x 
3.7 x s, and an acoustic wave 
travel time of about 2.4 x lo-* s based on a sound speed of 340 m/s. The magnitudes 
of the timescales imply that it would be prudent to use a non-equilibrium 
formulation to describe this dynamic compression process. 

Acoustic disturbances in a cylinder can be initiated and sustained by either 
mechanical energy input through a driving piston (Evans & Evans 1956; Chester 
1964; Schneider 1981 ; Klein & Peters 1988), or by means of thermal energy supply 
a t  the boundary (Sirignano & Crocco 1964; Kassoy 1979; Radhwan & Kassoy 1984). 
The repeated reflections of the acoustic waves cause periodic oscillations of the 
velocity and thermodynamic properties of the gas. I n  the early study by Evans & 

a piston travelling time of approximately 
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Evans (1956), the deviation of a piston-generated, shock-containing comprcssion 
process from the iscntropic process is estimated, based on the conservation equations 
for shocks (the Rankine-Hugoniot conditions). Their results are useful for evaluating 
irreversible effects caused by strong shock passage, but are not very relevant to 
studies of weak shocks that may actually appear in an engine cylinder, because the 
entropy change across the latter is known to be of third order in the shock strength 
(Landau & Lifshitz 1959). Later on Chester (1964) investigated theoretically the 
gasdynamic disturbances produced in a gas-filled tube by a vibrating piston using a 
small-Mach-number compressible flow model. His work is not engine-related either 
because the amplitude of the piston motion is very small relative to the length of the 
tube. 

Schneider’s (1981) study of the piston-cylinder problem is based on multiple 
reflections of a weak shock generated by an initial impulsive piston motion. The 
piston displacement is of the same order of magnitude as the length of the cylinder. 
Characteristic methods are used to solve the gasdynamic equations in order to follow 
the path of the shock. A multiple-timescale analysis is used to resolve the many shock 
reflections that occur during the relatively long period of piston motion. The results 
are used to explain how multiple passages of a weak shock through a cylinder causes 
thc observed bulk compression process. More recently Klein & Peters (1988) have 
used a related approach to study weak pressure wave propagation and evolution 
proccsses in a piston-cylinder system, and their role on the development of a thermal 
explosion in a reactive gas. Their results show explicitly the shock formation process 
evolving from initially smooth compression waves, based on the development of 
multiple-valued regions in the characteristic space. 

An impulsive piston motion in a finite cylinder will generate a shock wave 
instantaneously with an amplitude determined by the piston Mach number 
(Kevorkian & Cole 1981). I n  contrast, when a piston accelerates smoothly from rest 
linear acoustic waves are generated initially. The amplitude of the wave field depends 
upon the piston acceleration and its Mach number. Nonlinear accumulation effects 
will cause the acoustic wavefront to  be transformed into a weak shock if the wave is 
strong enough, and if there are sufficient time to permit the nonlinearity to develop 
fully before the piston reaches the opposite cylinder endwall. It would, therefore, be 
very interesting to examine in a systematic way the entire process of wave 
generation, its later evolution and possible shock formation. I n  this paper we 
concentrate on the case of fast piston acceleration that occurs on the short acoustic 
timescale. Waves induced by much slower piston acceleration occurring on the piston 
timescale are considered in a separate paper (Wang & Kassoy 1990a). 

In the present work the modelling of a piston-driven compression is based on the 
one-dimensional, unsteady equations for a perfect gas with transport effects. The gas 
is confined laterally between a fixed wall and a moving piston. The latter acceleratus 
from rest to a Mach number M = 0 ( 1 O p 2 )  during an acoustic time period, tz = 

0(10-4 s), and then moves a t  constant speed for a considerably longer piston time 
period, t: = O(10-2s). It is assumed in this model that the cylinder sidewalls do not 
have any effect on the planar gasdynamical process generated by the piston motion. 
The goal of the study is to predict the transient response of the gas to the piston 
motion prior to the time a t  which the piston reaches the fixed cylinder endwall. 

An appropriate non-dimensionalization of the complete equations is used to 
demonstrate that  transport effects are limited to  thin thermal accommodation layers 
adjacent to the solid surfaces, of the type examined by Rott (1980). Isentropic 
nonlinear gasdynamic equations describe the fundamental physics everywhere else. 
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The generation of a linear acoustic field by continuous piston acceleration on the 
acoustic timescale is described first. The solution is expressed in terms of an infinite 
series of Fourier spatial modes. This linear acoustic solution is valid until t* - 
0 (t,* t,*)i = O( s), when the frequency of the wavefront reflections is altered in an 
important way by compression of the cylinder gas. A multiple-timescale analysis 
capable of resolving the frequency variations is applied to extend the linear acoustic 
solution to a longer timescale. 

On the piston-passage timescale the acoustic waves continue to propagate in the 
compressing gas. A multiple-timescale analysis is again employed to separate the 
bulk compression from the acoustic phenomena. The development of nonlinear 
phenomena causes mode coupling in the Fourier series analysis, so that the time- 
dependent Fourier coefficients are described by an infinite system of nonlinear, 
ordinary differential equations. Numerical evaluation of the coefficients is obtained 
from a suitably truncated version of the system. The results obtained from series 
summation show the steepening of the compression wavefront and the formation of 
a weak shock. They also provide an explicit representation of the accumulated bulk 
compression arising from the passage of travelling waves which are reflected 
repeatedly a t  the boundaries. The former is simply that obtained from classical 
thermodynamic arguments. As the piston moves towards the cylinder endwall the 
wave passage frequency increases, as a result of increased sound speed and reduced 
wave travelling distance. A uniformly valid, composite solution, covering the entire 
time period, is constructed. 

2. Mathematical formulation 
The dynamic compression process is examined in the one-dimensional model of a 

piston-cylinder configuration shown in figure 1. Initially the gas is a t  rest and in an 
equilibrium state (p,,*,p,*, T:) inside a cylinder of length L*. The acoustic timescale 
is defined by t,* = L*/c,*, where the undisturbed speed of sound is c,* = (yR*T,*)t. I n  
contrast, the much longer conduction timescale is defined by t: = L * 2 / ~ , * ,  where K,* 

is the thermal diffusivity of the initial state. 
The complete non-dimensional equations describing‘ the physical system in figure 1 

can be written in the form (Kassoy 1979) 

where the subscripts t and x denote partial derivatives. The non-dimensional 
variables are defined in terms of dimensional quantities (with asterisk) by 

( 5 )  
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FIGURE 1. The physical system : an ideal inert gas undergoing piston-driven compression 
in a cylinder. 

where ,u*, k*, and C: represent the dynamic viscosity, thermal conductivity and 
specific heat at constant volume, respectively. The parameter y is the ratio of specific 
heats and 

where the former is basically a Knudsen number. For air a t  standard conditions 
(p,* = 1 atm, T,* = 300 K) and L* = 0.08 m, the typical Prandtl number Yr = O ( l ) ,  
and then 6 = O(10-6). The specific heats are assumed constant so that G, = 1. 
Calculations using isentropic relations based on the properties of air (Bolz & Tuve 
1973) show that, even for a compression ratio as high as 10, the error arising from the 
constant C: approximation is less than 5%. 

The initial conditions are simply 

t = O ;  p = p = T = l ,  u=O. ( 7 )  

On the solid surfaces the dynamic boundary conditions can be written as 

x = X,( t ) ;  u = UJt )  = ej’(t) ,  
x =  1 ;  u = 0, 

where X,(t)  is the piston location and U,(t) the piston speed. The parameter e is the 
maximum piston Mach number defined as the ratio of the maximum piston speed to 
the speed of the sound c t ,  

Typically c = O(0.05). The functionj’(t) is an order-one quantity (the prime denotes 
a derivative) which describes the piston motion with time. A piston velocity 
variation typical of those to be considered is shown in figure 2. 

Solutions to the basic system (1)-(4) and (7)-(9) are to be sought in the limit 
E + O ,  6+0 where it is noted that 6 < e. The limiting forms of (3) and (4) imply that 
transport effects may be important in very thin accommodation layers, adjacent to 
solid surfaces, of the type considered by Rott  (1980). In  addition, sufficiently high- 
frequency, short-wavelength acoustic phenomena will be viscous and heat con- 
ducting. Nonetheless, the most important physical processes in the cylinder can be 
described by the inviscid, non-conducting versions of (3) and (4). The dissipation 
effects are in general too weak to cause acoustic damping on the timescale considered. 
In this respect, the state, continuity and energy equations can be combined to give 
the familiar results 

p = pY+ 0(6),  T = pY-l+ O(6).  (11) 



Compression and shock formation due to fast piston acceleration 27 1 

t 

FIGURE 2. Piston velocity function. 

It follows from (3) that the momentum equation can be written as 

It should be pointed out that if shock waves are present in the system, transport 
effects play a vital role in the extremely thin layer where velocity and thermodynamic 
properties of the gas experience a sudden change. However, from a practical point of 
view the gas properties on both sides of the shock and their increments across the 
shock are of major interest, rather than the internal structure of the shock wave. A 
weak solution of the Euler equations (2) and (12) alone can correctly provide these 
values. 

It is also to be emphasized that the one-dimensional unsteady model employed in 
this study is used to determine the explicit effects of gasdynamical processes on 
equilibrium compression. In  this sense we do not address the effects of non-planar 
flow (e.g. vortices and turbulence) or of thermal conduction on the cylinder sidewalls. 
Given the timescale of the piston stroke, perhaps a few thousandths of a second, it 
is not likely that 
process described 

The analysis is 

heat exchange with sidewalls-will have a noticeable effect on the 
below. 
carried out most efficiently in terms of the Lagrangian variable 

because the fluid mass in the cylinder is constant. The piston surface x = X p ( t )  is 
represented by s = 0, while the fixed endwall corresponds to  s = 1 as a result of mass 
conservation. Equation (13) can be used in (2) and (12) to find 

pt+p2U,y = 0, ut+p+ps = O(S).  (14) 

The appropriate initial conditions are given in (7),  while the boundary conditions 
take the form 

s = 0 ;  u= €f ' ( t ) ,  s = 1; u = o .  (15) 

Once p and u are obtained, the pressure and temperature are found from the results 
in (1 1). The mathematical methods employed here are derived from related studies 
of thermal-mechanical processes by Kassoy (1979), Poland & Kassoy (1983), 
Radhwan & Kassoy ( 1984) and from multiple-timescale oscillatory dynamical 
systems discussed by Kevorkian & Cole (1981). 
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3. Linear acoustic theory 
The piston speed Up = O(e)  induces both mechanical and thermodynamical 

disturbances of similar magnitude into the gas. As a result, the scaling trans- 
formations 

u = €a( t , s ;E) ,  p = l+€p(t , s ;e )  (16) 

can be used in (14), (15) and (7)  to derive the lowest-order approximate system valid 
in the limit 6 +0, 

pt +a, = 0, at +pa = 0. (17) 

t = O *  a = p = o .  (18) 

s = o ;  u=f‘,  s = l ;  u = o .  (19) 

It follows that the velocity field is described by 

att -ass = 0, (20) 

t = O ;  a = a t = o ,  (21) 

along with the boundary conditions (19). Either Laplace transform methods (Kassoy 
1979; Radhwan & Kassoy 1984) or a technique described by Courant & Hilbert 
(1953) can be used to obtain solutions. 

The short-time result 

describes the velocity field between the piston and the fixed endwall prior to the time 
at  which the wavefront reaches the latter. Equations (17) then give an identical 
solution for p. At s = t there is a jump in the gradient off‘(t) rather than the function 
itself. Thus s = t is a surface of weak discontinuity representing the acoustic 
wavefront, Further development,s, including explicit individual wavefront reflections 
can be followed using a format described by Miles (1971). However, it is equally 
informative to write the general solution as 

m 

a =f ’ ( t ) ( l - s )+  C A,(t)sin(nns), 
n-1 

A,(t)  = -- f”(f) cos [nn(f-t)] df. 
n: 1: 

An integration of (17) for pt and ps gives the density perturbation, 

m 

p = f ( t )  - C. I n ( t )  cos (nns) ,  
n=l 

where 

and f(0) = 0. In general, the piston motion depicted in figure 2 has the asymptotic 
propertyf(t+ 00) - t + 0 ( 1 ) ,  so that A,(t+ 00) = O(1) and In(t+ 00) = O(1). 

The results in (23) and (25)  demonstrate in an explicit manner that the gas 
response can be described in terms of two distinct effects. In each equation the first 
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term describes the bulk response of the gas a t  time t, which is the accumulated effect 
of multiple passages of compressive acoustic waves across the cylinder. The density 
variation, f(t), corresponds to the result found from a traditional thermodynamic 
analysis of compression. The second term is a Fourier representation of the 
instantaneous acoustic field. 

In the limit t + 00, solutions (23) and (25)  take the form 

(28) 1 30 

p(t+Oo,s) - l + e  t-  CI,(t+oo)cos(nns) + . . .  . [ n=l 

Equation (28) indicates that a non-uniformity occurs when t = O(e-l) as a result of 
bulk compression. This is, however, not the earliest singularity in the asymptotic 
expansions. Let ii = Q1 + sQ, + . . . , p = pl + cpz + . . . and derive the higher-order 
approximation to (14). The system for i& is given by 

t = 0;  Q2 = U z t  = 0, (29 ) 

s = O , l ;  u 2 = o ,  

where pl is given in (25) ,  (26). The non-homogeneous forcing function in (29) is the 
source of a secular term in the Q,,-solution which is O(t2 )  for t + co, for the type of 
piston motion depicted in figure 2. For example, if t,he piston motion is specified by 
the functionf(t) = t+e-t - 1, the asymptotic behaviour of Q, as t - t  00 is found from 
(29) : 

sin (nns) 
l imii ,=i(y+1)t2 C 
t+m n=l 1 +n2n2 

[sin (nnt) -nn cos (nnt)] + O ( t ) .  

If the total velocity is written as u = eaI +e2@,+. . . , it is found that the non- 
uniformity occurs first in the velocity solution at t = O(e-;), when the basic density 
variation is like p - 1 +Of&) from (28). The breakdown of u a t  t = O(e-;) implies that  
&t is an important new timescale. It actually represents the time at which the 
compression of the gas becomes sufficiently large to alter substantially the frequency 
of the acoustic wave passages across the cylinder. As will be shown, this is the cause 
of the O(t2)  secular growth exhibited in the velocity solution aZ, 

4. Extended acoustic theory 
The non-uniformity in the asymptotic solutions which occurs a t  t = O ( d )  can be 

eliminated by using a multiple-timescale analysis. A new time variable is defined by 
1 

CT = czt (31) 

and CT is treated as though it were independent oft (Kevorkian & Cole 1981), although 
the relation (31) holds. As a result, the ordinary time derivative in (14) must be 
replaced by 
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The subscripts refer to independent variables held constant in each of the derivatives. 
Equations (14) and their initial conditions ( 7 )  become 

pt+€+n+p%s = 0, (33) 

ut + €+ug + p y - l p s  = 0,  

and t = a = 0 ;  p = 1,  u = U , + S h L ,  = 0. (35 )  

(36) u=€U1+ebL2+  . . . ,  

p = l + s ~ p o + € p l + € ~ p , +  . . .  . (37 )  

Po = pofa), ~ o f g  = 0) = 0, (38) 

(34) 

The boundary conditions are given in (15). For the limit t .+O the velocity and 
density are expressed as 

When (36) and (37) are used in (33)-(35), the lowest-order equations imply that 

which indicates that po is a function of the longer timescale only. 
The next-order approximate equations are 

P l t  +UlS = -Ph(@, U l t  +PI8 = 0, (39) 

which can be combined to givc 

Initial and boundary conditions are derived from (15) and (35)  : 

U l t t  -%ss = 0. 

t = a = 0;  u1 = Ult  = 0, (41 1 
s = o ;  ul=f’( t ) ,  s =  1 ;  u, =o.  (42) 

The general solution to (40)-(42) is written as 

m 

u1 = f ’ ( t )  (1 -8) + B,(t, a) sin (nxs),  (43) 

where 

R,(t, u) = C,(o) cos (nxt) +D,(a) sin (nxt)  +- 1 sin [nx(t‘- t)]f”’(t‘)  di. (44) 
n2x2 

The functions C,(n) and D,(cT) are to be determined from the next-higher-order 
approximate equations. Their initial values are obtained by substituting (43), (44) 
into (41): 

R 0 

In the derivation of (45), the first term in (43) has to be Fourier decomposed with 
respect to s and expressed in terms of Fourier sine series. 

The slowly varying function po(a) can be determined uniquely a t  this stage. If (39) 
and (43) are combined one obtains 

00 

plt = -ph(cr)+f’(t) - C nn:B,(t, a) cos (nxs).  
n=l  

If B,(t, a) is assumed to be well-behaved (harmonic or exponential decay with time) 
as t+ CO, then to suppress O ( t )  growth in p1 the following relation must be enforced : 

lim [ -ph(a) +f’(t)] = 0. 
t+m 

(47) 
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Given the f ‘(t)-behaviour in figure 2. this gives 

Po = g, (48) 
which satisfy conditions given in (38). 

recombination one finds 
The higher-order analogue to (40) can be obtained from (33)-(37), and by suitable 

UZtt - u2ss  = - 2UlFt + (Y + 1) Po U l S S .  (49) 
Equations (43), (44) and (48) can be used in (49) to  show that 

m 

uZtt-uzss = - F,(t, u) sin (nns) ,  (50) 
n=l 

where 
F,(t, u) = [2nnDk(u)+ (y+ 1) n’n2aC,(u)] cos (nnt)  

+ [ -2nnC,(u) + ( y +  1) n2n2uDn(u)]  sin (nnt)  

Thus far, the piston motion function f ( t )  is arbitrary as long as it satisfies the 
properties described in figure 2. For a specified f ( t )  the integral in (51) can be 
evaluated. One identifies that  terms proportional to cos (nnt)  and sin (nnt)  in F, are 
resonant forcing terms because, when used in (50), they generate O(t) growth in the 
particular solution of uz. These terms must be eliminated by setting their coefficients 
equal to zero. As an example calculation, we adopt -the function mentioned 
previously, i.e. 

f ( t )  = t+ept - l ,  (52) 

to describe the piston motion. Using (52) in (51) and eliminating all the resonant 
terms leads to  I Y + 1  D ; ( a ) + ~ ( y + l ) n n r G , ( n ) - ~ ~  = 0, 

1 u = 0. Y + l  c‘,( u) - i ( y  + 1 ) nnuD, (u) - 
nn( 1 + n2n2) 

(53) 

Equations (53) are solved analytically subject to the initial conditions in (45). The 
results, together with (52), can be inserted into (44). After some rearrangement? it 
follows that 

where 
$n = -tan-l(;). 1 

nn (55) 

Obviously B, in (54) has the well-behaved character assumed earlier. The velocity is 
thus obtained from (43). To complete the density solution, the two first-order 
differential equations for p1 in (39) are integrated to provide the result 

where h(u)  is an integration constant, to be found from higher-order considerations. 
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Equations (51)-(53) can be used in (50) to obtain the following differential 
equation for u2 

nx W 

U , , , - U ~ ~ ~  = - 2 ( y + I ) a e p t  C T s i n ( n n s ) .  
n=l 1 +n 7c (57) 

The corresponding initial and boundary conditions are derived from (15) and 
(35)-(37) : 

t = v = 0;  up = 0,  U2t+U1m = 0,  (58) 

(59) s = o ;  u 2 = o ,  s =  1;  u,=o. 

The solution to (57)-(59) is written in the form 

u2 = 5 [an(~)cos (nn t )+b , (o ) s in (na t ) -2 (y+1)  n7c ,ve.']sin(mis), (60) 
n=1 ( l + n  n ) 

with a,(O) = b,(O) = 0, (61) 

where a,(v) and b,(a) can be determined only from higher-order considerations. 
Fortunately their exact forms are not needed to  find the function h ( v )  in (56). As a 
result one can consider the equation for p2 derived from (33), (36) and (37): 

When the expressions for p,,, p l ,  u1 and u2 are used in (62), and the resulting terms 
are rearranged, i t  is found that the term -hC'(cr)+2u will lead to secular growth in 
p2 upon integration. Therefore it is required that 

-h'(C) + 2 g  = 0. (63) 

The solution of (63) under the initial condition pl(t  = v = 0) = 0 is then 

h(a)  = a 2 -  1. (64) 

The results developed in this section can be combined t'o express the velocity and 
density solutions accurate to O ( E )  that describe the compression process during the 
extended acoustic time period : 

sin(nn(t+a(y+1)rr2+q5,)) sin(nxs) + O ( d ) ,  (65) 1 1  1 - 
( 1 + n2x2); 

cos(nn(t+a(y+ 1)v2+#,)) cos(nxs) + O ( E ~ ) .  (66) 1 1  1 - 
n n ( l +  n2n2)t 

In  (65) and (66), terms inside the summation signs are Fourier decompositions of 
the evolving acoustic disturbances in the Lagrangian coordinate system. The 
mcumulated effect of acoustic wave transmission up to time (t ,a) is the spatially 
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FIGURE 3. The velocity distribution in terms of Lagrangian variable s during the piston 
acceleration period as obtained from (65). The maximum piston Mach number E = 0.05, and 
y = 1.4. 

homogeneous bulk fluid response, which is represented by terms outside the 
summations. Except for the transient terms, proportional to  e-t, inside the square 
brackets, which affect only a very short initial period, the amplitude of each Fourier 
mode is basically periodic in time with slowly growing frequency according to 
1 + [a(?+ i)] et. This frequency variation was not included in the single-timescale 
solutions (23)-(26) and hence the O ( t z )  secular growth in the higher-order velocity 
expansion resulted. The maximum amplitudes of the Fourier modes are independent 
of time and decay rapidly as the mode number n increases. I n  the limit a-0,  which 
corresponds to very small piston displacement and weak compression of the gas, the 
equivalence of (65), (66) to (23)-(26) can be easily checked if the piston motion 
function (52) is applied to (23)-(26). 

Figure 3 displays the generation and development of the velocity disturbance in 
the confined gas during the acceleration period of the piston, which is of the same 
order of magnitude as the acoustic timescale. The vertical axis represents the gas 
velocity magnified by a factor e-l, and the horizontal axis is the Lagrangian 
coordinate. The velocity distribution in this Lagrangian system is calculated from 
(65) by summing 200 Fourier terms, and plotted for a succession of acoustic times 
indicated above each curve, when the piston Mach number E = 0.05. Calculations 
based on summations of more Fourier modes were also conducted, and the results 
exhibited no appreciable change in the velocity curves. 

Once the piston is accelerated smoothly from rest, i t  creates acoustic signals which 
propagate in the gas medium with the local speed of sound. As the acoustic 
wavefront propagates, it imparts a finite-velocity disturbance along its passage in 
the initially quiescent system. At t = 0.6 the acoustic wavefront has not yet reached 
the opposite cylinder endwall a t  s = 1 and the region ahead of the wavefront remains 
undisturbed. By the time t = 1 the wavefront reaches the cylinder wall. It is then 
reflected and its direction of propagation is reversed. The compression wave 
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FIGURE 4. The density distribution in terms of the Lagrangian variable s during the piston 
acceleration period as obtained from (66). The maximum piston Mach number E = 0.05, and 
y = 1.4. 

decelerates the gas it encounters. Meanwhile the velocity of the gas ahead of the now 
backward-travelling wavefront continues to increase as a result of additional 
acoustic signals being emitted from the accelerating piston surface. In this way the 
acoustic signals continue to be reflected back and forth across the cylinder, 
generating the bulk compression effect. The velocity profiles in figure 3 are always 
continuous. Discontinuities occur only in the first derivative of velocity at the 
acoustic wavefronts. In figure 4 the corresponding density distribution inside the 
cylinder is plotted for the same set of time values. One may observe clearly the 
steady buildup of gas density with time as the compression wavefront travels back 
and forth between the two confining walls. The pressure and temperature spatial 
distributions have similar characteristics, given the isentropic relations in (1 1). 

In summary, we have successfully extended the time range of uniformly valid 
acoustic time solutions for both u and p to t = O(e-t) or CT = 0(1), where cr is a 
timescale intermediate in the logarithmic sense between the short acoustic time and 
the long piston time. On timescale cr the compression effect becomes significant 
enough to shift the frequency of acoustic wave reflections in the cylinder. By taking 
into account this frequency change, the O ( P )  mixed secular growth found in the 
velocity expansion in 33 is eliminated. It should be emphasized, though, that  no 
appreciable waveform deformation related with nonlinear phenomena is observed on 
the timescale g. Mathematically the solutions developed in this section still belong 
to the linear regime due to the linear nature of the secular equations (53), which 
determine the Fourier coefficients and hence the acoustic wave shape. The nonlinear 
accumulation effects are expected to become pronounced on the still longer piston 
time t - O(e-l), which is the subject of the next section. 
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5. Compression on the piston timescale 
- e-i or t - e-l, 

showing that when the piston has travcllcd an O(1) distance from its initial location, 
the extended acoustic timescale is no longer appropriate. Instead, one must define 
another important timescale 

The solution described in (66) is not uniformly valid when 

L* 
(67) 

t* 7 = e t = -  * - -  

which can be used to study more extensive gas compression, Here t; is the 
characteristic piston passage time. 

t; ' &I - qmax ' 

Given the form in (65) and (66), the velocity and density are expressed as 

u = €.ii( t ,7,8;€),  p = p0(7 )+€p( t , 7 , s ;€ ) ,  (68) 

for the limit B + 0, and a multiple-timescale formulation is again employed by using 
the relation 

The lowest-order linear wave equation is obtained for .ii from (14), (68) and (69) : 

.ii,,-p$+'(7) G,, = 0. (70) 

In this Lagrangian system the 7-dependent coefficient p$+l(7) is equivalent to the 
square of the instantaneous sound speed, which is slowly varying with time. The 
frequency of the acoustic wave passage will accordingly vary with 7 .  The 
instantaneous wave-passage frequency across the cylinder is proportional to the 
sound speed pk(Y+l), while the phase of the wave passage is proportional to the integral 
of pi(Y+l) with respect to t since pa is not a constant. Under such circumstances the 
straightforward two-variable procedure in terms o f t  and 7 fails and a transformed 
fast time variable 

must be applied. This choice of fast time variable is obtained by an analogy of the 
current problem with the classical problem o f  the motion of a pendulum under slow 
variations in its length (Kevorkian & Cole 1981). 

as the space 
variable, then the first three order approximations of (14) are 

If rand 7 are used as fast and slow time variables respectively, and 

and 

p P + l )  %f+ PK-' P 2 s  = - Ulr -  (7 - 1 )  p r 2  p1 PlS, 

p = po + epl + "2pZ + . . . , u = BU, + €2U2 + . . . . 

(77) 

(78) 

respectively, where the dependent variables in (72)-(77) are defined by 
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Equations (72) and (75) indicate that po = ~ ~ ( 7 ) .  A combination of (73) and (76) 
gives 

which must satisfy boundary conditions derived from (15) and (78) : 

ulii-ulss = 0, (79) 

s = o ;  u l =  1,  s =  1 ;  u1 = o .  (80) 

The general solution to (79), (80) can be written as 

Initial conditions, obtained by matching the piston time s( ution with the acoustic 
time solution, can be constructed from the asymptotic behaviour of (65) and (66) for 
t i c o , c r +  co: 

2 

n-1 nn( 1 + n2x2)i 

x sin [nx(t + ci(y  + 1 )  t2  + . . . + $n)] sin (nzs) + . . . , (82) I 
x cos[nz(t+&y+1)t2+ .. .+$,)I  c o s ( n m )  

A comparison of (82) with (81) implies that 

and l -  t+ei(y+1)t2+ . . .  as T + O .  (85) 
The two first-order differential equations for p1 in (73) and (76) are integrated to 

give 

m 

p1 = ~ f j ( ~ - - ~ )  p0(7) + 2 [-a,@) sin (nxf) + Pn(7)  COB (n~f)] cos (nns) i n=i 

+ [ p : ( ~ )  --p6(7)] fpi;(yfl), (86) 

where Po(.) is an integration constant representing the spatially homogeneous, slowly 
varying part in the Fourier series expression ofp,. Its  explicit form is to be found 
from higher-order considerations, such that Po(.  --f 0) = - 1 .  

I n  order to satisfy (83), and to prevent secular growth of p1 relative to the variable 
t", the last term on the right-hand side of (86) must be suppressed. It follows that 

1 
Po = 

Equation (87 )  describes the basic, spatially homogeneous density variation caused 
by decreasing cylinder volume associated with the piston motion. This zeroth-order 
solution is identical to the result obtained from a classical equilibrium thermo- 
dynamic calculation. The singularity a t  r = 1 occurs when the pistJon haa remhed 
the endwall a t  X, = 1. I n  practical terms, the solution is valid only for r < 1. 
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The transformed fast time variable f i s  calculated from (71) and (87), 

28 1 

It satisfies (85) and is in agreement with acoustic time solutions in the limit r+O. 
The unknown functions a,, Pn and Po in (86) are determined by a procedure similar 

to that in $4, although the mathematical derivations in the present case are lengthier 
and more cumbersome. Interested readers should refer to  Wang's (1989) dissertation 
for more details concerning the derivations of (89)-(96). 

A suitable recombination of (74) and (77) gives 

u z f f - u z s s  = 2P,2(P,,+a(Y- 7)  PoP l )s - i (Y+  l )P i (y -" ' (Ph (89) 

The expressions for po and p1 are substituted into the forcing function on the right- 
hand side of (89), and the results are collected into different groups according to their 
resonant or non-resonant nature. Based on the same argument as lead to (53) ,  
resonant forcing terms proportional to sin ( n d )  sin (nns)  and cos (nnt", sin (nxs)  must 
be suppressed to prevent O(f) secular growth in u2. As a result one obtains the secular 
equations for the Fourier coefficients ak and Pk, 

and el = 0, fl = 0, 
k-1 

ek = c (an ak-n-Pn Pk-n) ,  

Equations (90)-(92) constitute an infinite system of nonlinear ordinary differential 
equations, in contrast to the linear secular equations (53) on the extended acoustic 
timescale, in which Fourier modes of different orders are decoupled from each other. 
The strong nonlinear mode coupling in ck,  dk, ek and f k  is the source of wave 
deformation and shock formation in the physical system, which will be demonstrated 
later. Note that the system of coupled equations in (90)-(92) is in general not solvable 
by analytical methods. Numerical solutions of the truncated, finite system can be 
obtained only when the function P0(7) is known a priori. We now develop the explicit 
form of P0(7) from the second-order velocity and density equations. 

Once the resonant part of the forcing function is suppressed, (89) can be written 
as 

k=l n=l(n+k) 

where #&, n ( ~ )  and r i f k ,  J T )  are combinations of a,, a,, j?k and Pn, and are functions of 
r only. Equation (93) should satisfy the homogeneous boundary conditions that can 
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be derived from (15) and (78). The general solution to (93) has a form similar to the 
forcing function on the right-hand side of the former equation, 

m m  

u2 = 23 [y,, , cos ( n d )  + ak, sin (nni')] sin (kxs), (94) 
k=l  n=1 

where yk, and ak, , are also functions of 7 only, whose exact forms are irrelevant to 
the subsequent analysis. Equations (86), (87) and (94) can be used to rewrite (74) as 

195) picr+l) pzi = - p1(3-Y' (&-$(y+ l)p,po) +non-secular terms. 

One can suppress O(f) secular growth in pz if 
l ( Y + l ) ,  P o  = -PB (96) 

which satisfies the initial condition P0(7--f0) = - 1. 
Given P0(7) and initial conditions (84), the system of equations (90)-(92) can be 

truncated and solved numerically for k = 1,2, . . . , N .  The infinite summations in ck 
and d, in (91) are approximated by summations from n = 1 to n = N-lc for this 
truncated system, to match the number of unknowns with that of the equations. The 
resulting 2N equations are solved simultaneously by employing the DVERK 
subroutine from the IMSL computer software library, which is based on the fifth- 
and sixth-order Runge-Kutta method designed by Hull, Enright & Jackson (1976). 
The step sizes of numerical integration are adjusted automatically in accordance 
with the specified relative error tolerance, which is set to be < for each time step. 
This error is sufficiently small in view of the larger truncation errors in approximating 
the originally infinite system. Since the truncation errors involved in approximating 
the infinite summations in (91) become significant when k gets close to N ,  only the 
first t to $ of such computed coefficients are used to sum up the Fourier series. The 
results demonstrate that  this truncated system can adequately descri be the 
gasdynamic phenomena in the cylinder until shortly after the occurrence of the shock 
wave. Long after the shock formation, however, the convergence properties of thc 
Fourier series become very poor because the accumulation of truncation errors 
eventually destabilizes the solution. 

The total velocity and density of the gas can now be found by combining the 
results in this section, 

m 

[a,(7) cos (nxi') +P, (7 )  sin (nxi')] sin (nm) +O(c2) ,  (97) 

+ (1 - ?)-t(3--Y) 
1 

+ €  -___ 
(1-7)' 

1 
1-7  p = - -  { 

The first term in (97) describes the time-independent bulk gas velocity 
correponding to spatially uniform compression by a constant-speed piston motion. 
The bulk density change is represented by the first two terms in (98), where the O ( E )  
correction is due to the non-constant velocity of the piston during the acceleration 
period. Superimposed on the bulk effects are acoustic phenomena described in terms 
of a Fourier representation. The amplitudes of the Fourier spatial modes in (97) and 
(98) are harmonic in time with growing frequency due to growing i', which is a 
generalization of the linear frequency growth exhibited in the extended acoustic time 
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FIGURE 5.  The velocity distribution in terms of the Lagrangian variable s during piston time 
compression as obtained from (97). The piston Mach number e = 0.05, and y = 1.4. 

S 

solutions. Unlike the previous results in the last section (cf. (65), (66)) where the 
maximum value and the phase of the amplitude function for each Fourier mode are 
explicitly calculated as constants, they are now modulated by ?-dependent factors 
whose behaviour has to be determined numerically. This variation of the amplitude 
function on timescale 7 causes the deformation of the acoustic disturbance. The 
amplitude of the fluctuating density is larger than that of the fluctuating velocity, 
and grows with piston time as a result of the multiplication factor in (98), which is 
related to the bulk compression effect. 

The velocity distributions in the Lagrangian coordinate, like those in figure 3 for 
the extended acoustic timescale, are now depicted in figure 5 for specified piston 
times i- = 0.45, 0.55, 0.65, and 0.75. The results are obtained by a summation of 200 
Fourier terms in (97). Since the piston is moving a t  constant speed of 1 on this 
timescale, the velocity curves are bounded by 1 and 0 on both sides of the cylinder. 
The steepening of the acoustic wavefront with increasing 7 eventually leads to shock 
formation. The steep portions of velocity curves a t  T = 0.65 and 0.75 in figure 5 are 
identified as shock waves based on the following reasoning: 

When the Fourier series of a discontinuous function is plotted up to  certain 
approximation, one obtains, instead of a real discontinuity, a sharp change of the 
function value over a narrow but finite region whose thickness is equal to half the 
wavelength of the highest-order spatial mode in the truncated series (Wang 1989). 
Near both sides of the region the solution exhibits oscillations known as Gibbs 
phenomena (Kirmin  & Biot 1940). By comparing the thickness of the steep portions 
in the velocity curves a t  7 = 0.65 and 0.75 with the wavelength of the highest-order 
Fourier mode used in the summation, and by noticing the occurrence of the Gibbs 
phenomena, we conclude that the two seemingly non-vertical steep curves are 
virtually shock waves. A quantitative discussion about the slope of a Fourier-series- 
represented distributed ‘discontinuity ’ has been given by Wang (1989). 

The shock formation time in the cylinder, based on the above-mentioned method 
of shock identification, is found to  be 7 z 0.6. It is observed that the shock first 
occurs a t  the very front of the continuously generated compression wave, increasing 
its strength with time as it propagates between the two solid boundaries. The 
situation is similar to unidirectional-propagating compression waves. The changing 
directions of wave propagation does not appear to  alter the shock formation process 
fundamentally. When plotting figure 5 and the subsequent figures, we have 
computed a1-a300 and p1-p300 at  1600 time intervals from (go), and between 100-200 

10 FLM 220 
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terms in the Fourier series are used. The computations were conducted on a CYBER 
205. It is worth pointing out that we computed a large number of terms in the series 
in order to achieve sufficient resolution and steepness of the shock wave. One can 
obtain cruder but representative solutions with fewer Fourier modes (say, 50 terms) 
with a VAX-class mainframe computer without significant loss of accuracy, 
especially prior to shock formation. 

6. Composite solutions 
The preceding asymptotic results have been developed for both the short acoustic 

time regime and the more extended piston time period. For the purpose of 
compactness and convenience, i t  is desirable to derive a complete solution covering 
the whole time range of the piston-driven compression. Such uniformly valid 
composite expansions are formed by adding together solutions from different time 
regions and then subtracting from them the common parts (Kevorkian & Cole 1981). 
The composite solutions for velocity and density are constructed from (65) ,  (66) ,  (97) 
and (98) and take the form: 

- (1  -7)-”’”-y)(a,(r) sin (n7tt”)-pp,(7) cos (nnt“)) cos (nns) + o ( E ~ ) .  (100) 

Once the small piston Mach number E is specified, the dynamic response of the 
confined gas can be evaluated by using (99), (100) and the isentropic relations in (1  1) 
until 1--7 - O ( E ) ,  which marks the breakdown of expansion (100). Physically this 
corresponds to the time when the piston has almost reached the endwall of the 
cylinder. 

Figure 6 displays the time variations of u a t  a set of specified Lagrangian 
coordinates for the case E = 0.05. Since each value of the Lagrangian coordinate 
represents a certain material point, these figures actually show the velocity a t  the 
indicated mass locations. In  figures 6(a)-6(d) the magnified velocities U / E  a t  mass 
locations s = 0, $, t and i, respectively, are plotted against the piston timescale r.  The 
smooth, slowly varying line in each figure describes the bulk velocity associated with 
spatially homogeneous compression. When the acoustic phenomena are added, the 
total velocity is observed to  oscillate around the bulk value as a result of the repeated 
forward and backward transmissions of the compression wavefront. It is found that 
the velocity fluctuations are of the same order of magnitude as the bulk velocity, and 
that the maximum fluctuation occurs at s = (cf. figure 6 c ) .  In  figure 6 ( a ) ,  s = 0 
represents the impermeable piston face, whose velocity is given by the time 
derivative of the piston motion function (52), and on which no fluctuating velocity 
is allowed. The tooth-like shape of the velocity fluctuations in the u-r plots can be 
explained from the results in figure 6 ( d ) .  The piston-induced acoustic wavefront first 
reaches the given mass location a t  r x 0.0375 or t % 0.75. When the forward-running 
acoustic wavefront passes through the location, an increase in the particle velocity 
results. On the other hand, a backward-running acoustic wavefront tends to decrease 
the particle velocity. Repeated reflections of the compression wavefront give rise to 

1 1  
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FIGURE 6. Velocity variations with piston time at specified material points s as obtained from (99). 
(a) s = 0, ( b )  s = i, (c) s = 4, (d )  s = i. The maximum piston Mach number E = 0.05, and y = 1.4. 

the alternating acceleration-deceleration process. The accelerating time t ,  corre- 
sponds to the round-trip time for the compression wavefront to travel between the given 
mass location and the cylinder endwall, while the decelerating time t ,  is the round-trip 
time between the mass location and the piston face. Except for the special case of 
s = 0.5, t ,  generally does not equal t ,  because of the asymmetrical locations of the two 
confining boundaries relative to the given material point. A comparison of figures 

in-z 
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6 ( b ) ,  6(c )  and 6 ( d )  shows that for increasing values of s the ratio t J t ,  decreases 
because the relative location of the material point is closer to  the cylinder endwall. 
As time progresses the tooth-shapes in u-t plots are altered owing to the deformation 
of a sharp compression wavefront. At r x 0.6 line segments that  are almost vertical 
begin to appear a t  corners of the teeth, where the fluid particles first encounter weak 
shocks formed at the wavefront. Because the shock has some finite thickness in the 
finite-sum approximation, the passage time of that finite zone is finite. Hence one 
should not expect absolutely vertical lines in the drawings. In  fact the slope of the 
lines can be estimated from the shock ‘thickness ’ and its speed. The length of the 
‘almost vertical ’ segments increases with increasing shock strength, as the nonlinear 
wave deformation processes continue. The calculations are terminated a t  r = 0.8 
owing to limitations of the approximation method. The relatively large truncation 
errors cause unreliable results beyond this point. It is also noted that when r = 0.8 
the asymptotic expansion (100) gets close to the point of breaking down. 

Density variations with time are plotted in figures 7 (a)-7 ( d ) ,  where each figure 
corresponds to t,he mass location and plotting conditions of its velocity counterpart 
in figures 6(a)-6(d) .  The upper curve pb and lower curve pa are extracted from 
equation (100) and represent the bulk compression term and the acoustic 
contribution, respectively. The former consists of terms out,side the summation in 
(loo), and the latter is the summation part in the equation magnified by a factor e-’. 
The total density is then p = pb + €pa. The bulk effects are spatially homogeneous and 
hence pb curves are identical in figures 7 (a)-7 ( d ) .  The pa curves in those figures are 
observed to be piecewise smooth. Each point of discontinuous derivative (and of 
discontinuous function itself after shock formation) between two smooth curve 
sections indicates the time when the compression wavefront arrives a t  the given 
material point. The portions of the pa curve with the positive slope show the strong 
compression effect brought about by the wavefront. The portions with negative 
slope, on the other hand, show the weakening of the compression strength after the 
passage of the wavefront. The times t ,  and t ,  marked in figure 7 ( d )  are the same 
round-trip times of the wavefront as those in figure 6 ( d ) ,  and their relative 
magnitudes depend on the relative mass location in the system. The two times are 
not equal in general, except when s = t (cf. figure 7c) .  In  figures 7 (b)  and 7 (d) the 
smaller round-trip times correspond to the bumps on the wave-like pa curves. In 
particular when s = 0, t, = maximum and t, = 0. When the shock is formed in the gas 
medium, the positive-slope lines steepen up to form shock discontinuities, cutting the 
initially continuous curves into discontinuous pieces. If the total density p is plotted, 
it should consist of an initially undisturbed value, followed by a succession of 
oscillatory increases with time before shock formation, and stepwise increases after 
the shock formation. The maximum density fluctuation is found to exist a t  the two 
solid boundaries, i.e. the piston face and the cylinder endwall. Although density 
variations on the latter are not shown, it is worth pointing out that the p-r curves 
a t  s = 1 have shapes similar to those in figure 7 ( a ) ,  except for a phase lag in the 
oscillatory acoustic modes. 

In figure 6 the amplitude of the fluctuating velocity increases monotonically with 
time in such a way that the total velocity is always bounded by 0 and 1; the 
amplitude of the density fluctuations in figure 7, on the other hand, can be amplified 
without limit as the bulk density approaches infinity. 

The increasing frequency of the compression wave passage with time in figures 6 
and 7 is caused by two major effects. First, the acoustic velocity increases as the 
temperature rises from compressive heating and, secondly, the distance between the 
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FIGURE 7. Density variations with piston time at  specified material points s obtained from (100). 
pb is the bulk density, and pa is the density change due to acoustic contributions. The total density 
p = pb+epB. (a )  s = 0, ( b )  s = i, ( e )  s = i, ( d )  s = i. The maximum piston Mach number F = 0.05, and 
y = 1.4. 

piston and the top of the cylinder decreases with time. This frequency is also affected 
strongly by the piston Mach number. In figure 8 the density variation at the piston 
surface is given when c = 0.1, twice as much as the case plotted in figure 7. The faster 
piston speed allows for fewer acoustic wave reflections during one piston stroke. It 
is important to notice from figure 8 that  the acoustic disturbance also steepens to 
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FIGIJRE 8. Density va.riations with piston time on the  piston face s = 0 obtained from (loo), for the 
case when the maximum piston Mach number E = 0.1, and y = 1.4. pb is the bulk density, and pa 
is the density change due to  acoustic contributions. The total density p = p, ,+~p, .  

form a shock when 7 x 0.6, the same values as when e = 0.05. This shows that the 
shock formation time measured in terms of piston time units is invariant with the 
piston Mach number. I n  other words, the shock always occurs when the piston 
reaches a fixed position in the cylinder. This is because a compression wave of larger 
amplitude ( - e in the present case) will evolve into a shock within a shorter travelling 
distance and hence fewer reflections. From a mathematical point of view, this is 
clearly seen from secular equations (90)-(92) which are e-independent, and which 
describe the development of nonlinear phenomena in the physical system. 

7. Transformation to Eulerian coordinates 

to provide the x = x ( t , ~ , s )  map, 
The inverse of the Lagrangian transformation in (13) can be combined with (100) 

In effect, this result provides the x-location of a material point s a t  a specified time 
7 given a specific value e so that t = r / e  is known. When 7 --f 0, x - s + O(e) where the 
O(e) shift is due to events on the acoustic timescale t,*. Equation (101) is plotted in 
figure 9 for given specific material points. It shows that, except for the initially 
motionless period before the acoustic wavefront arrives a t  each location, the material 
points exhibit basically linear displacements with increasing time 7 .  The Fourier 
series summation in (101) is responsible for the small oscillations around the linear 
displacement process for s = a, $ and $, as is shown in figure 9. As 7 increases, the 
amplitude of these oscillations decreases significantly. Note that although the 
velocity and density become discontinuous across the weak shock when it is formed, 
the displacement of material points remains always continuous because they all have 
finite speed. 

By substituting (101) into (99) and (loo), one can obtain the velocity and densit,y 
distributions in Eulerian coordinates. Figure 10 shows the velocity and density 
history a t  the specified cylinder location x = 2. The differences between figure 10 and 
figures 6 ( d )  and 7 ( d )  are to be noted. In the latter case Lagrangian coordinates are 
used. As time evolves, the distance between the location x = $ and the forward- 
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FIGURE 9. The displacement of material points s = 0, i, +, 4 and 1 due to piston motion 
X ,  = ~ ( t + e - ~ -  1). The maximum piston Mach number E = 0.05, and y = 1.4. 
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FIGURE 10. (a) Velocity and ( b )  density variations with piston time a t  spatial coordinate x = t. 
The maximum piston Mach number E = 0.05, and y = 1.4. 
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moving piston decreases while that to the end of the cylinder remains constant. This 
shift of relative position causes changes in the relative magnitudes of the two 
previously mentioned round-trip times, t ,  and t,, thus distorting the tooth-like u< 
and pa< curves. The driving piston reaches x = when 7 x 0.75, a t  which time the 
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FIGURE 1 1 .  Spatial velocity distributions inside the cylinder on the piston timescale 7. The 
instantaneous piston position a t  each time value T is indicated by a vertical line. The maximurn 
piston Mach number E = 0.05, and y = 1.4. 

fluctuating velocity vanishes and the total velocity equals the piston speed. 
Meanwhile the density fluctuation reaches its maximum value. Again vertical 
portions of velocity and density curves appear a t  late stages, implying the formation 
of weak shock. 

Velocity profiles inside the cylinder are plotted in figure 11, for four selected piston 
time instants covering almost the whole compression stroke. The instantaneous 
piston position corresponding to each time is indicated by a vertical line. The points 
with discontinuous x-derivatives on the velocity profiles for r = 0.3 and 0.5 are the 
instantaneous locations of the acoustic wavefront. When T = 0.7 a fully formed shock 
is present in which Auls !Z 0.3. 

8. Conclusions 
In the present paper the one-dimensional dynamic compression of an inert gas by 

a piston is considered. The gas is initially static. The piston Mach number increases 
smoothly from zero to a maximum value E during a short acoustic time unit t = O( 1) .  
On the more extended piston timescale T = ~t = O(1) the piston travels into the 
cylinder with a constant speed. The gasdynamic processes during the compression 
are modelled by the unsteady Euler equations. Asymptotic solutions are found in 
terms of single and multiple timescales in the limit of small piston Mach number. 
Solutions are constructed using a Fourier series technique to represent the evolving 
compression wave field of O ( E )  generated by fast piston acceleration. 

The solution approach developed in the present study is shown to be able to 
adequately describe the wave deformation and weak shock formation processes. The 
mathematical derivation is easier than that for the more traditional method of 
characteristics employed in the studies by Schneider (1981) and Klein and Peters 
(1988). Morever, i t  generates solutions that give explicit descriptions of the bulk 
motion and the instantaneous acoustic field, something difficult to  extract from the 
characteristics calculations. A more comprehensive comparison between the two 
methods is discussed in a related paper (Wang & Kassoy 1990b). 

Uniformly valid Fourier series solutions are obtained analytically for the linear 
acoustic field during the piston acceleration period, which is of the same order of 
magnitude as the acoustic timescale. The compression wavefront remains linear until 
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considerable piston displacement is attained. On the longer piston timescale during 
which significant compression of the gas occurs, the time-dependent coefficients in 
the Fourier series solutions are governed by an infinite system of coupled nonlinear 
ordinary differential equations. A numerical method is employed to find solutions to 
the truncated system to obtain the velocity and thermodynamic properties of the 
gas. The results show how nonlinear evolution on this timescale causes steepening of 
the compression wavefront. One observes the formation of a weak shock when the 
gas is compressed to approximately 8 of its initial volume. The strength of the shock 
increases as it propagates back and forth between the two confining walls of the 
compressing system. Throughout the compression stroke repeated reflections of the 
acoustic or shock waves cause velocity and density fluctuations of the gas with time. 
The maximum velocity fluctuation appears in the middle plane between the moving 
piston face and the fixed cylinder endwall, while the maximum density fluctuation 
occurs at the two solid surfaces confining the gas. The accumulative effect of the 
wave passage is responsible for the spatially homogeneous bulk compression. As a 
result of the bulk compression, both the amplitude and frequency of the acoustic 
modes increase as the piston moves to fill the cylinder. 
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